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Abstract. In this paper we present a novel dyad dimensional synthesis
technique for approximate motion synthesis. The methodology utilizes an
analytic representation of the dyad’s constraint manifold that is parame-
terized by its joint variables. Nonlinear optimization techniques are then
employed to minimize the distance from the dyad’s constraint manifold
to a finite number of desired locations of the workpiece. The result is an
approximate motion dimensional synthesis technique that is applicable to
planar dyads. Here, we specifically address planar RR dyads since these
are often found in the kinematic structure of industrial robotic systems
and mechanisms. These dyads may be combined serially to form a complex
open chain or, when connected back to the fixed link, may be joined so as
to form a closed chain; e.g. a platform or mechanism. Finally, we present a
numerical design case study which demonstrate the utility of the synthesis
technique.

1. Introduction

The constraint manifold of a dyad represents the geometric constraint im-
posed on the motion of the moving body or workpiece. This geometric
constraint on the moving body is a result of the kinematic structure of the
dyad; e.g. its length and the location of its fixed and moving axes(i.e. lines).
The constraint manifold is an analytical representation of the workspace of
the dyad which is parameterized by the dyad’s dimensional synthesis vari-
ables. Here we derive the constraint manifold of planar RR dyads in the
image space of planar displacements and utilize this constraint manifold to
perform dyadic dimensional synthesis for approximate rigid body guidance.
The derivation of the constraint manifold in the image space involves writ-
ing the kinematic constraint equations of the dyad using the components
of a dual quaternion. We view these equations as constraint manifolds in
the image space of spatial displacements, see Bottema and Roth (1979)
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and Larochelle (1994). The result is an analytical representation of the
workspace of the dyad which is parameterized by its joint variables. The
synthesis goal is to vary the design variables such that all of the prescribed
locations are either: (1) in the workspace, or, (2) the workspace comes as
close as possible to all of the desired locations. Recall that in general five is
the largest number of locations for which an exact solution is possible for
the planar RR dyads being discussed here, see Suh and Radcliffe (1978).
Previous works discussing constraint manifold fitting for an arbitrary num-
ber of locations include Ravani and Roth (1983), Bodduluri and McCarthy
(1992), Bodduluri (1990), and Larochelle (1994). All of these works employ
implicit representations of the dyad constraint manifolds. The constraint
manifolds, which are known to be highly nonlinear(McCarthy 1990), are
then linearly approximated by tangent hyperplanes by using a simple Tay-
lor series strategy. The distance from the approximating tangent plane to
the desired location is then used to formulate an objective function to
be minimized. These efforts met with limited success since the constraint
manifolds are highly nonlinear and the approximating tangent planes yield
poor measures of the distance from the constraint manifold to the desired
locations, see Larochelle (1996) and Larochelle(1994). For example, when
solving for a spherical four-bar mechanism for 10 desired locations Boddu-
luri and McCarthy (1992) utilized 120 starting cases of which 38 converged
to the solution. In Larochelle (1996) a methodology which does not require
linearization of the constraint manifold was reported. The method utilized
computer graphics to visually present a projection of the constraint mani-
fold to the designer. The designer then directly manipulated the synthesis
variables until the parameterized constraint manifold was acceptably near
the desired locations. This technique proved to be effective but was tedious
to use and results depended heavily upon the designers experience and
knowledge. Here, we utilize parameterized constraint manifolds and nonlin-
ear optimization to yield a numerical dimensional synthesis technique for
approximate motion synthesis which does not require a linear approxima-
tion of the constraint manifold.

We proceed by reviewing the image space of planar displacements and
deriving the parameterized form of the constraint manifold of the planar
RR dyad. We then present the approximate motion synthesis procedure
and a detailed numerical example.

2. Image Space of Planar Displacements

First, we review the use of planar quaternions for describing planar rigid-
body displacements. Our approach is to view planar displacements as a
subgroup of SE(3) and as occurring in the X — Y plane. A general planar
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displacement may then be described by a 3 x 3 orthonormal rotation matrix
[A] and a translation vector d = [d; d, 1]7. Associated with the matrix
of rotation [4] is an axis of rotation s = [0 0 1]7 and a rotation angle 6.
Using the translation vector d and the rotation angle 8, we can represent a
planar displacement by the four nonzero components of a dual quaternion
q which is written as, see McCarthy (1990),

¢ %’“—cos%-}—%”—sin%
e84y 8
q= Q@ | _ —2151112'—!—2(:052 ' (1)
g3 smg
g4 oS 3

We refer to q as a planar quaternion. Note that the four components of q
satisfy qg —i—qZ —1 = 0 and therefore they form a three dimensional algebraic
manifold which we denote as the image space of planar displacements.

2.1. PLANAR QUATERNION PRODUCT

Given two planar quaternions, g and h, their product yields a planar quater-
nion which represents the composite planar displacement obtained by the
successive application of g and h. We may write the product of two planar
quaternions in the following matrix form, see McCarthy (1990),

gh=Gth=H g (2)
where,
g4 —Gg3 g2 41
Gt = g3 G4 —g1 92
0 0 g4 g3
0 0 —g3 g4
and,

hg hy ~hs M
—~hs ha h1  ho
0 0 hg hs
0 0 —hs hg

H =

3. Planar RR Constraint Manifold

In this section we derive the parametric form of the constraint manifold
of the planar RR dyad. The constraint manifold is derived by expressing
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analytically the geometric structure that the joints of the dyad impose on
the moving body, see Larochelle (1994), Ge (1990), Bodduluri (1990), and
Suh and Radcliffe (1978). Using the image space representation of planar
displacements and the geometric constraint equations of the dyad we arrive
at constraint equations in the image space that are parameterized by the
joint variables of the dyad.

A planar RR dyad of length a is shown in Fig. (1). Let the axis of
the fixed joint be specified by the vector u measured in the fixed reference
frame F and let the origin of the moving frame be specified by v measured
in the link frame A. The dimensional synthesis variables of the dyad are u,
v, and a. We obtain the structure equation in the image space of planar

Figure 1. A Planar RR Dyad

displacements by using planar quaternions to represent the displacement
D from F to M,

D = x(us)y(uy)z(0)x(a)z($)x(vs)y (vy) (3)

where x(-), y(+), and z(-) are planar quaternion representations of displace-
ments either along or about the X, Y, or Z axes respectively. To take full
advantage of the image space representation we now rewrite D as,

D = gdh (4)

where: g = x(uz)y(uy) is the displacement from F to O, h = x(vg)y(vy) is
the displacement from A to M, and d' = z(8)x(a)z(¢) is the displacement
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along the dyad from O to A. Performing the quaternion multiplications
yields,

d 3 sin Q’—z"é 5
= | itz ®)
0%
COs "'2—4)
Uz Vg
&y b
) =1 2
g=1| 3§ and h= 8 (6)
1 1
Finally, using Eq. (2) we express Eq. (4) as,
D(0,¢,r) = ed =GH(wH (v)d (a,6,¢) (7

where r = [u? vT q]7 is the vector of dimensional synthesis variables. In
Eq. (7) we have a surface in the image space of planar displacements which
is parameterized by the design variables of the dyad. This surface is the
constraint manifold of the planar RR dyad. Specifically, for a given fixed
pivot u, a given moving pivot v, and a crank length a, Eq. (7) yields the
constraint manifold of the dyad parameterized by its two joint angles 8 and
¢. Moreover, it is important to note the arrangement of the design variables
in Eq. (7). The two joint angles of the dyad have been isolated into the far
right hand-side of Eq. (7). This arrangement of the design variables will be
exploited later by the approximate motion synthesis technique.

4. Approximate Motion Synthesis

In this section we begin by discussing the metric used to measure the dis-
tance between the desired image points and the dyad’s constraint manifold.
This is followed by a numerical synthesis procedure for designing dyads for
approximate motion synthesis.

4.1. THE METRIC

The metric used to measure the distance d between an image point D (6, ¢, 1)
on a dyad’s constraint manifold and an image point q associated with a
desired location of the workpiece is:

d(D(0,¢,1),q) =/(DO,4,1) —)T(DE,,5) —q). ()
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In order to synthesize dyads which guide the workpiece as near as possible
to the desired locations we require an efficient technique for determining
the image point D (8, ¢, r) that minimizes d. For a given dyad dmin is deter-
mined by performing a direct search of a two dimensional fine discretization
of the constraint manifold with respect to 6 and ¢. Note that we exploit
the separation of variables in generating the discretization of D(6,¢,r) in
Eq. (7) since G*(u)H~(v) are constant for a given dyad(i.e. r).

It is important to note that d is a measure of the distance from q to
s and that even though this metric is useful for designing dyads it, like all
other distance metrics, is variant with respect to choice of coordinate system
when used for spatial or planar displacements. For further discussions of
displacement metrics see Larochelle (1999), Chirikjian (1998), Larochelle
and Tse (1998), Gupta (1997), Bobrow and Park (1995), Park (1995), Etzel
and McCarthy (1996), Martinez and Duffy (1995), and, Kazerounian and
Rastegar (1992).

4.2. THE OPTIMIZATION PROBLEM

Given a finite set of n desired locations the task is to determine the dyad
which guides the workpiece through, or as near as possible, to these loca-
tions. Our approach is to utilize the metric discussed above to determine
the distance from the constraint manifold to each of the n desired locations,
sum these distances, and then to employ nonlinear optimization techniques
to vary the dimensional synthesis parameters such that the total distance
is minimized. The optimization problem then becomes:

MINIMIZE: f(r)  where:  £(r) = 3" dimin (T, @)-

We utilize the non-linear optimization package ADS by Vanderplaats (1984)
with the variable metric method for unconstrained minimization by Davidon
(1959), and Fletcher and Powell (1963).

5. Case Study

We now present an example of the design of a planar RR dyad for the ten
desired locations that were used by Ravani and Roth (1983) to demonstrate
their synthesis procedure, see Tbl. (1). The optimal dyad reported by Ra-
vani and Roth was: u = [14.00 — 0.12)7, v = [-9.00 1.00]7, and a = 8.31.
This dyad has a distance sum of 1.03E —2. The optimal dyad determined
here is: u = [14.98 —2.08]T, v = [~11.22 4.62]T, and a = 6.45. The distance
to each of the desired locations is listed in Tbl. (1) and the distance sum
is 3.62E —3. Note that the distance for the synthesis technique presented
here is more than 5 times smaller than that for the dyad determined by
the constraint manifold linearization technique of Ravani and Roth. More-
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over, our implementation of the methodology of Ravani and Roth (1983)
required more than 50 random initial guesses of the solution to have one
converge to the optimal dyad they reported while the technique presented
here required only one random initialization to converge to the reported
solution.

l Pos. # X y ) Distance
1 0.0 0.0 40.0 1.10E—4
2 4.5 4.0 200 5.55E-4
3 8.5 8.0 0.0 1.08E—3
4 13.0 115 -30.0 1.50E-4
5 13.0 125 -35.0 3.27E-5
6 9.5 140 -350 4.23E-4
7 50 135 -30.0 1.22E-5
8 1.0 105 —150 8.09E-4
9 -1.0 6.5 0.0 3.93E-4
10 -1.5 3.0 20.0 476E-5

TABLE 1. Planar Locations and Distances

6. Conclusions

In this paper we have presented a novel dyad dimensional synthesis tech-
nique for approximate motion synthesis for a finite number of desired loca-
tions of a workpiece. The methodology utilizes an analytic representation
of the dyad’s constraint manifold that is parameterized by its joint angles.
Nonlinear optimization techniques are then employed to minimize the dis-
tance from the dyad’s constraint manifold to a finite number of desired
locations of the workpiece. It is important to note that the technique pre-
sented utilizes a direct search of the discretization of the constraint manifold
and thereby avoids the difficulty of previous techniques which required lin-
earization of the constraint manifold. The result is an approximate motion
dimensional synthesis technique that is applicable to the design of planar
dyads. Currently, work is ongoing to extended the technique to the design
of spherical and spatial dyads.
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